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Leibniz algebras, a generalization of Lie algebras, were introduced by J.-L. Loday
[Enseign. Math. (2) 39 (1993), no. 3-4, 269-293; MR1252069] and C. Cuvier [Ann.
Sci. Ecole Norm. Sup. (4) 27 (1994), no. 1, 1-45; MR1258404]. A motivation to study
this class of non-associative algebras can be found in the definition of the n-cochains
when the tensor product is replaced by the exterior product. In such a case, the
differential property is obtained by considering the Leibniz identity instead of the
anticommutativity and the Jacobi identity. It turns out that Leibniz algebras generalize
the role played by Lie algebras in several areas: differential geometry, homological
algebra, classical algebraic topology, algebraic K-theory, loop spaces, noncommutative
geometry, quantum physics, etc.

Recently, S. A. Ayupov and B. A. Omirov [Sibirsk. Mat. Zh. 42 (2001), no. 1, 18-29,
i; MR1830788] established the notion of filiform Leibniz algebras, which includes as a
subclass the class of filiform Lie algebras.

In this paper, the authors introduce a method, based on algebraic invariants, to classify
a class of filiform Leibniz algebras. An application of the developed method to some low-
dimensional complex filiform Leibniz algebras is provided. The resulting classification
in 5 and 6 dimensions coincides with the classification given by J. R. Gémez Martin, A.
Jiménez-Merchan and Yu. B. Khakimdzhanov [J. Pure Appl. Algebra 130 (1998), no. 2,
133-158; MR1635083]. Juana Sdnchez Ortega
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